iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting.
TL;DR
AI KEY POINTS
ABSTRACT
PAPER
The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting.
Research is provided by Semantic Scholar and AI-generated text may at times produce inaccurate results.
Information provided on this site does not constitute legal, financial, medical, or any other professional advice.
DATA LICENSING
Search and article data is provided under CC BY-NC or ODC-BY and via The Semantic Scholar Open Data Platform. Read more at Kinney, Rodney Michael et al. “The Semantic Scholar Open Data Platform.” ArXiv abs/2301.10140 (2023): n. pag.